
  

  

Matrix method to solve the differential power flow 
equation in the frequency domain 

J. Mateo1, 
1 Group of Photonic Technology, Aragón Institute of Engineering Research (i3A), Universidad de Zaragoza, 

Zaragoza, Spain,  

M.A. Losada1 

jmateo@unizar.es, alosada@unizar.es 

Abstract: We present a method to obtain the frequency response of step index (SI) plastic optical 
fibers (POFs) based on the power flow equation generalized to incorporate the temporal 
dimension where the fiber diffusion and attenuation are functions of the propagation angle. To 
solve this equation we propose a fast implementation of the finite-difference method in matrix 
form. The model provides the space-time evolution of the angular power distribution when it is 
transmitted throughout the fiber which gives a detailed picture of the POFs capabilities for 
information transmission. 

Introduction. In a previous work, we devised a method based on Gloge’s equation and on 
experimental far field patterns (FFPs) to obtain the angular diffusion and attenuation functions 
characteristic of a given fiber1 that account for the fiber spatial behavior. However, as the temporal 
dependence is not explicit in the equation, the frequency response and bandwidth cannot be calculated 
from this approach. Thus, in this paper we present a fast and robust matrix approach of the finite-
difference method to solve the temporal generalization of the power flow equation in the frequency 
domain for the given angular diffusion and attenuation functions2,3. The frequency responses for a 
given fiber at a range of lengths calculated with our method were used to validate it by comparing 
them to our own experimental measurements for the same fibers4. Thus, we showed that the shape of 
the measured frequency responses is far from Gaussian and is, however, well reproduced by our 
model predictions. Moreover, the proposed model provides the space-time evolution of the optical 
power when it is transmitted throughout the fiber. This space-time function gives a complete 
description of power evolution and can be used to derive parameters with strong impact over fiber 
transmission capabilities and to extend model predictions where it is difficult or unpractical to 
measure them, giving a full insight of fiber behavior. Thus, in the paper we first describe our method 
and then, we discuss how the information provided by the space-time power distribution can be used 
to understand and improve fiber transmission behavior. 

Matricial approach proposed to solve the space-time power flow equation. We use Gloge's power 
flow equation to describe the evolution of the modal power distribution as it is transmitted throughout 
a POF where different modes are characterized by their inner propagation angle with respect to fiber 
axis )(θ , which can be taken as a continuous variable1. We make no assumptions about the angular 
diffusion and attenuation which are described as functions of θ , )(θd  and )(θα  respectively. 
Following the procedure described by Gloge2 to introduce the temporal dimension, the partial 
derivative of the optical power, ),,,( tzP θ  with respect to z , we get the following equation:  
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Then, we take the Fourier transform at both sides of Eq. (1) and use the Fourier derivation property to 
obtain the following simplified equation:  
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where ),,( ωθ zp  is the Fourier transform of ),,( tzP θ . To solve this differential equation we 
implement a finite-difference method where we use a forward difference for the first z  derivative, 
and a first and second-order central differences for the first and second angular derivatives 
respectively. Thus, the power at angle θ  and distance zz ∆+  is obtained as the linear combination of 



  

  

the power at the same angle and the two adjacent angles ),( θθθθ ∆−∆+  for a distance z  as shows 
the following equation:  
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Equation (3) can be expressed in a more compact representation in matrix form. In fact, the 
differential changes in the angular power distribution at each z∆  step are given by a simple matrix 
product. Thus, given the angular power at an initial length 1z , the power distribution at a longer length 

2z  can be calculated with the following matrix equation:  

 ( ) ( ),,)(=),( 12 ωωω zz m pDAp ⋅+  (4) 

where p is a vector where each component k  is the power at the discretized propagation angle 

θθ ∆⋅k= , and 
z
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∆
− 12=  is an integer that can be found for any pair of lengths, 12 > zz  providing 

we choose a small .z∆  A is a diagonal matrix that describes power propagation without diffusion. Its 
elements are obtained from Eq. (3) as  
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Notice that A is the only frequency dependent term in Eq. (4). Iteration over the values of ω  gives the 
complete spatial and temporal evolution of the optical power in the fiber. The complex values of 

)(, ωkkA  are obtained by sampling the angular frequency ω  as required for a precise calculation of the 
inverse discrete Fourier transform of ),,( ωθ zp  to obtain ),,( tzP θ . The matrix D is a tri-diagonal 
matrix which accounts for diffusion along the fiber. Its elements for 0>k  are:  
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These matrix elements describe power diffusion through a differential fiber length giving the fraction 
of the power that flows out from a given angle and that drifting to this angle from the adjacent ones. 

To obtain the boundary condition at 0,=k  corresponding to 0=θ , we use the approximation 
proposed in5, and the fact that )(θP  is an even function of the angle, obtaining  
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The other boundary condition at the maximum k  = N  is given by Eq. (6). Thus, so that there are no 
losses due to diffusion, the value of 1, −NND  must compensate for the absence of the term 1, +NND  such 
that the sum of terms is zero, resulting in  
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Matrix ))(( DA +ω  carries all space-time information concerning power propagation through the fiber 
and thus, gives a complete description of the fiber as a transmission system. The key of the method 
we propose to solve Eq. (2) is to take advantage of the sparse nature of this matrix. Therefore, 
calculating multiple matrix powers is more efficient than performing the same number of iterations, 
particularly when using MatLab®. Even more, it is not necessary to re-calculate these matrices when 
changing the initial condition to obtain the space-time output power distributions, as they only depend 
on the fiber diffusion and attenuation. The values of z∆  and θ∆  that are critical for convergence have 
been determined according to the required precision. In the calculations presented here we have used 

0.001=z∆  m and 0.005=θ∆  rad obtaining accurate results. The execution time for these values and 
a typical simulation of a 150 m fibre length to obtain the power distribution at 5 m steps is 0.03 s, 
more than 70 times faster than the method used in1, based on the MatLab® partial derivative equation 
solver. 
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Fig. 1:  The graph on the upper left is the image representation of the space-time power distribution at 
the output of 150 m of the PGU fiber. Below, the lower leftmost graph shows the overall pulse spread 
obtained as the integral of power over output angle. The power integral over time renders the radial 
profile of the FFP shown on the upper rightmost graph. 

Space-time power distribution. Once the initial condition in vector form is multiplied by the system 
matrix, it is possible to obtain the power distribution as a function of output angle and frequency 

),,( ωθ zp  at a given length Lz =  for a given input source. Its inverse Fourier transform gives the 
power temporal spread for each output angle at this length, ),,( tLP θ  that we call space-time power 
distribution. In Figure 1, the upper leftmost graph shows the power at the output of a 150 m PGU fiber 
as an example. Time in nanoseconds is shown on the horizontal axis and output angle in degrees on 
the vertical axis. Each row represents the temporal pulse arriving at a given output angle. The 
integrated power over the angle results in the temporal pulse spread, shown normalized in the graph 
below the image. The global frequency response ),( ωLH  can be obtained as its Fourier transform. 
The image columns are the radial profiles of the spatial power distribution at fixed times. The 
integrated power over time gives the radial profile of the FFP represented on the upper rightmost 
graph as normalized power on the horizontal axis versus angle in degrees on the vertical axis. These 
simulated radial profiles were used to estimate the fiber attenuation and diffussion along experimental 
ones1. On the image, the superimposed solid line joins the angular positions at which the maximum 
power reaches the fiber end at each temporal delay. The dashed line shows the delay as a function of 
angle, obtained without diffusion which is given by the ray-theory inverse cosine law.  



  

  

An important aspect revealed by the triple dependence of power with propagation angle, length and 
time/frequency is that to obtain the pulse spread or the frequency response at one given length ,L  it is 
not enough to know the pulse spread or the frequency response at any shorter length. To compute the 
total acquired delay at a given angle and fibre length it is necessary to know the previous path 
followed by the power reaching that angle, which implies to know the space-time power 
distribution: ).,<,( 0 tLLp θ  Thus, to be able to calculate the frequency response at any length, it is 
necessary to know the angular power distribution right at the fibre input: 0)=0,=,( tzP θ  where 
there is no propagation acquired temporal delay. In fact, previous experimental results suggest that the 
input distribution has a strong impact on bandwidth changing the balance of diffusion and differential 
attenuation6. Thus, on the basis of the discrepancies found for short and middle length fibers we found 
that the initial angular power distribution is critical to predict the temporal behavior. The strong initial 
diffusion suffered by the optical power when it enters the fibre is introduced into our present 
framework as an independent effect by means of another matrix, which we called injection matrix J , 
is very different for each fibre type and was estimated as an arrangement of our experimental radial 
profiles for 1.25 meter fibres obtained launching a He-Ne laser beam at different angles as described 
before6. Therefore, the matrix product of the injection matrix and the transmitter angular power 
distribution gives the vector describing the angular power distribution just after entering the fibre4. 

The image in Figure 1 shows that optical power that exits the fiber over a cone from 0º to 8º is 
concentrated over a relatively narrow time slot. Above this angular range, pulses have a wider time 
spread and their peaks increase with the output angle as shows the blue line in the image. At these 
angles, the power peaks are reached at lower times than for the cosine prediction indicating noticeable 
shorter delays than those that would be obtained in the absence of diffusion. In other words, diffusion 
improves the fiber transmission capability. The horizontal time shift at the lowest angles does not 
affect the fiber behavior as it is an overall delay. Therefore, the power exiting the fiber at the highest 
angles is also that with the longest delays. Thus, an easy way to improve fiber capacity is the use of a 
spatial filter that removes or attenuates the tail at the higher angles as was experimentally7 and 
theoretically8 shown before. As most power is confined in a range of lower angles, filtering out the 
power at the highest angles will imply small power loss while producing a narrower overall impulse 
response. 

Conclusions. In summary, we have described a fast and robust method that provides the space-time 
optical power distribution with length which gives a complete description of the fibre behaviour. 
Model predictions have been found to reproduce experimental measurements of different POF 
parameters and can be also applied to improve some propagation properties7,8. In addition, the method 
offers a flexible tool to study the effects of using different devices, such as scramblers, tappers, etc, or 
the impairments occasioned by defects and imperfections as they can be modelled as matrices to be 
introduced in our framework9.  
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